Underwater images typically experience mixed degradations of brightness and structure caused by the absorption and scattering of light by suspended particles. To address this issue, we propose a Real-time Spatial and Frequency Domains Modulation Network (RSFDM-Net) for the efficient enhancement of colors and details in underwater images. Specifically, our proposed conditional network is designed with Adaptive Fourier Gating Mechanism (AFGM) and Multiscale Convolutional Attention Module (MCAM) to generate vectors carrying low-frequency background information and high-frequency detail features, which effectively promote the network to model global background information and local texture details. To more precisely correct the color cast and low saturation of the image, we introduce a Three-branch Feature Extraction (TFE) block in the primary net that processes images pixel by pixel to integrate the color information extended by the same channel (R, G, or B). This block consists of three small branches, each of which has its own weights. Extensive experiments demonstrate that our network significantly outperforms over state-of-the-art methods in both visual quality and quantitative metrics.


翻译:水下图像通常会因悬浮颗粒吸收和散射光散光而导致亮度和结构的混合降解。为了解决这一问题,我们提议建立一个实时空间和频度域网(RSFDM-Net),以有效增强水下图像的颜色和细节。具体地说,我们提议的有条件网络是用适应性多色调机制(AFGM)和多级革命关注模块(MCAM)设计的,以产生含有低频背景信息和高频细节特性的矢量器,有效地促进网络以模拟全球背景资料和本地纹理细节。为了更准确地纠正图像的颜色外观和低饱和度,我们采用了一个三色色图示区块(TFE)基本网,通过像素处理图像像像像象素(R、G或B),以整合同一频道(R、G或B)延伸的颜色信息。这个区由三个小分支组成,每个分支都有其自身的重量。广泛的实验表明,我们的网络在视觉质量和定量测量中明显超越了最新方法。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员