Segmenting unseen objects is a crucial ability for the robot since it may encounter new environments during the operation. Recently, a popular solution is leveraging RGB-D features of large-scale synthetic data and directly applying the model to unseen real-world scenarios. However, the domain shift caused by the sim2real gap is inevitable, posing a crucial challenge to the segmentation model. In this paper, we emphasize the adaptation process across sim2real domains and model it as a learning problem on the BatchNorm parameters of a simulation-trained model. Specifically, we propose a novel non-parametric entropy objective, which formulates the learning objective for the test-time adaptation in an open-world manner. Then, a cross-modality knowledge distillation objective is further designed to encourage the test-time knowledge transfer for feature enhancement. Our approach can be efficiently implemented with only test images, without requiring annotations or revisiting the large-scale synthetic training data. Besides significant time savings, the proposed method consistently improves segmentation results on the overlap and boundary metrics, achieving state-of-the-art performance on unseen object instance segmentation.
翻译:对机器人来说,隐形物体的分割是关键的能力,因为它在操作期间可能遇到新的环境。最近,一个流行的解决办法正在利用大型合成数据的RGB-D特性,并将模型直接应用于不可见的现实世界情景。然而,由于Sim2Real差距造成的领域转移是不可避免的,对分化模型提出了关键性挑战。在本文件中,我们强调跨模拟培训模型的批量Norm参数的适应过程,把它作为模拟培训模型的批量Norm参数的一个学习问题。具体地说,我们提出了一个新的非参数酶目标,它以开放世界的方式为测试时间适应制定学习目标。然后,跨模式知识蒸馏目标进一步设计,鼓励测试时间知识转移,以加强特征。我们的方法只能通过测试图像,而无需说明或重新审视大规模合成培训数据,才能高效地实施。除了节省大量时间外,拟议方法还不断改进重叠和分界度测量结果,从而实现在不可见天体对象实例分解的状态。