We revisit two well-studied scheduling problems in the unrelated machines setting where each job can have a different processing time on each machine. For minimizing total weighted completion time we give a 1.45-approximation, which improves upon the previous 1.488-approximation [Im and Shadloo SODA 2020]. The key technical ingredient in this improvement lies in a new rounding scheme that gives strong negative correlation with less restrictions. For minimizing $L_k$-norms of machine loads, inspired by [Kalaitzis et al. SODA 2017], we give better approximation algorithms. In particular we give a $\sqrt {4/3}$-approximation for the $L_2$-norm which improves upon the former $\sqrt 2$-approximations due to [Azar-Epstein STOC 2005] and [Kumar et al. JACM 2009].
翻译:在不相关的机器设置中,我们重新审视了两个经过仔细研究的时间安排问题,其中每个工作在每台机器上可以有不同的处理时间。为了最大限度地减少总加权完成时间,我们给出了1.45种方法,这比先前的1.488种方法[Im和Shadloo SODA 2020]有改进。这一改进的关键技术要素在于一个新的四舍五入计划,该计划在限制较少的情况下提供了强烈的负相关关系。在[Kalaitzis等人,SODA 2017]的启发下,为了最大限度地减少每台机器负荷的负值,我们给出了更好的近似算法。特别是,我们给出了$@sqrt {4/3} $-norm的近似算法,它比前的[Azar-Epstein STOC 2005] 和[Kumar 等人,JACM 2009]前的美元2美元和[KUmar 相近似]有所改进。