The most common strategy of imputing missing values in a table is to study either the column-column relationship or the row-row relationship of the data table, then use the relationship to impute the missing values based on the non-missing values from other columns of the same row, or from the other rows of the same column. This paper introduces a double autoencoder for imputation ($Ae^2I$) that simultaneously and collaboratively uses both row-row relationship and column-column relationship to impute the missing values. Empirical tests on Movielens 1M dataset demonstrated that $Ae^2I$ outperforms the current state-of-the-art models for recommender systems by a significant margin.
翻译:在表格中估算缺失值的最常见策略是研究数据表的列列列关系或行行-行关系,然后使用此关系根据同一行其他列的未遗漏值或同一列的其他行的缺漏值估算缺失值。本文为估算引入了一种双自动编码器(Ae ⁇ 2I$),该计算器同时和协作使用行-行关系和列-栏关系来估算缺失值。对Movelens 1M数据集进行的经验性测试显示,$A ⁇ 2I$大大超过了目前推荐系统最先进的模型。