We consider the weighted $k$-set packing problem, in which we are given a collection of weighted sets, each with at most $k$ elements and must return a collection of pairwise disjoint sets with maximum total weight. For $k = 3$, this problem generalizes the classical 3-dimensional matching problem listed as one of the Karp's original 21 NP-complete problems. We give an algorithm attaining an approximation factor of $1.786$ for weighted 3-set packing, improving on the recent best result of $2-\frac{1}{63,700,992}$ due to Neuwohner. Our algorithm is based on the local search procedure of Berman that attempts to improve the sum of squared weights rather than the problem's objective. When using exchanges of size at most $k$, this algorithm attains an approximation factor of $\frac{k+1}{2}$. Using exchanges of size $k^2(k-1) + k$, we provide a relatively simple analysis to obtain an approximation factor of 1.811 when $k = 3$. We then show that the tools we develop can be adapted to larger exchanges of size $2k^2(k-1) + k$ to give an approximation factor of 1.786. Although our primary focus is on the case $k = 3$, our approach in fact gives slightly stronger improvements on the factor $\frac{k+1}{2}$ for all $k > 3$. As in previous works, our guarantees hold also for the more general problem of finding a maximum weight independent set in a $(k+1)$-claw free graph.


翻译:我们考虑加权的美元设定包装问题, 即我们拥有一组加权的成套装备, 每套装备的重量最多为美元, 并且必须返回一批配对的脱节装备, 且其总重量最大。 对于 $ = 3 美元, 这个问题概括了典型的三维匹配问题, 列为Karp 原21 NP 完成问题之一 。 我们给出了一个算法, 加权3 套包装的近似系数为$ 786 美元, 改进了 Newohner 的最近最佳结果 $2\ frac {1\ 6, 700, 992美元。 我们的算法基于Berman 的本地搜索程序, 试图改善正方位重量的总和, 而不是问题的目标。 当使用以$ $ 最多为 21 NP 的大小交换时, 这个算法的近似近似值为$2, 2k-1 + k-1 美元 美元 美元 。 我们用一个相对简单的分析, 在$ = 3 美元 美元 美元 上, 我们开发的工具, 以 0. 1 3 k 美元 最硬的 基 的 的比值 的比重的 。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员