We consider the weighted $k$-set packing problem, in which we are given a collection of weighted sets, each with at most $k$ elements and must return a collection of pairwise disjoint sets with maximum total weight. For $k = 3$, this problem generalizes the classical 3-dimensional matching problem listed as one of the Karp's original 21 NP-complete problems. We give an algorithm attaining an approximation factor of $1.786$ for weighted 3-set packing, improving on the recent best result of $2-\frac{1}{63,700,992}$ due to Neuwohner. Our algorithm is based on the local search procedure of Berman that attempts to improve the sum of squared weights rather than the problem's objective. When using exchanges of size at most $k$, this algorithm attains an approximation factor of $\frac{k+1}{2}$. Using exchanges of size $k^2(k-1) + k$, we provide a relatively simple analysis to obtain an approximation factor of 1.811 when $k = 3$. We then show that the tools we develop can be adapted to larger exchanges of size $2k^2(k-1) + k$ to give an approximation factor of 1.786. Although our primary focus is on the case $k = 3$, our approach in fact gives slightly stronger improvements on the factor $\frac{k+1}{2}$ for all $k > 3$. As in previous works, our guarantees hold also for the more general problem of finding a maximum weight independent set in a $(k+1)$-claw free graph.
翻译:我们考虑加权的美元设定包装问题, 即我们拥有一组加权的成套装备, 每套装备的重量最多为美元, 并且必须返回一批配对的脱节装备, 且其总重量最大。 对于 $ = 3 美元, 这个问题概括了典型的三维匹配问题, 列为Karp 原21 NP 完成问题之一 。 我们给出了一个算法, 加权3 套包装的近似系数为$ 786 美元, 改进了 Newohner 的最近最佳结果 $2\ frac {1\ 6, 700, 992美元。 我们的算法基于Berman 的本地搜索程序, 试图改善正方位重量的总和, 而不是问题的目标。 当使用以$ $ 最多为 21 NP 的大小交换时, 这个算法的近似近似值为$2, 2k-1 + k-1 美元 美元 美元 。 我们用一个相对简单的分析, 在$ = 3 美元 美元 美元 上, 我们开发的工具, 以 0. 1 3 k 美元 最硬的 基 的 的比值 的比重的 。