We consider the problem of minimizing the total processing time of tardy jobs on a single machine. This is a classical scheduling problem, first considered by [Lawler and Moore 1969], that also generalizes the Subset Sum problem. Recently, it was shown that this problem can be solved efficiently by computing $(\max,\min)$-skewed-convolutions. The running time of the resulting algorithm is equivalent, up to logarithmic factors, to the time it takes to compute a $(\max,\min)$-skewed-convolution of two vectors of integers whose sum is $O(P)$, where $P$ is the sum of the jobs' processing times. We further improve the running time of the minimum tardy processing time computation by introducing a job ``bundling'' technique and achieve a $\tilde{O}\left(P^{2-1/\alpha}\right)$ running time, where $\tilde{O}\left(P^\alpha\right)$ is the running time of a $(\max,\min)$-skewed-convolution of vectors of size $P$. This results in a $\tilde{O}\left(P^{7/5}\right)$ time algorithm for tardy processing time minimization, an improvement over the previously known $\tilde{O}\left(P^{5/3}\right)$ time algorithm.
翻译:我们考虑的是将单一机器中拖拉工作的总处理时间最小化的问题。 这是一个经典的调度问题, 最初由[ 劳勒和摩尔 考虑, 通常的调度问题, 并且将子设置总和问题一般化。 最近, 事实表明, 这一问题可以通过计算$( max,\min) 美元扭曲的进化来有效解决 。 结果算法的运行时间相当于, 直至对数因素 。 直至计算美元( max,\min) $( max) $- skeed- convolution, 其总额为$( P), 美元是工作处理时间的总和。 我们通过引入工作“ 折叠” 技术, 并实现 $\\\\\ left( P ⁇ 2- 1/ ALpha ⁇ right) 运行时段, 其计算的时间相当于美元( m) P\\\\\\\\\\ relaxal $( lax) laxal 结果的运行时间。