The paper introduces a Bayesian estimation method for quantile regression in univariate ordinal models. Two algorithms are presented that utilize the latent variable inferential framework of Albert and Chib (1993) and the normal-exponential mixture representation of the asymmetric Laplace distribution. Estimation utilizes Markov chain Monte Carlo simulation - either Gibbs sampling together with the Metropolis-Hastings algorithm or only Gibbs sampling. The algorithms are employed in two simulation studies and implemented in the analysis of problems in economics (educational attainment) and political economy (public opinion on extending "Bush Tax" cuts). Investigations into model comparison exemplify the practical utility of quantile ordinal models.
翻译:本文介绍了一种巴耶斯估计方法,用于在单体半体形模型中进行四分位回归。介绍了两种算法,它们利用Albert和Chib(1993年)的潜在可变推论框架和不对称拉皮尔分布的正常耗尽混合表示。估计利用Markov连锁Monte Carlo模拟----Gibbs与大都会-哈斯廷斯算法一起进行取样,或只是Gibs抽样。这些算法在两个模拟研究中使用,用于分析经济(教育程度)和政治经济(关于扩大“Bush税”削减的公众舆论)方面的问题。对模型比较的调查证明了四分位元模型的实际效用。