In this work we introduce the class of unit-Weibull Autoregressive Moving Average models for continuous random variables taking values in $(0,1)$. The proposed model is an observation driven one, for which, conditionally on a set of covariates and the process' history, the random component is assumed to follow a unit-Weibull distribution parameterized through its $\rho$th quantile. The systematic component prescribes an ARMA-like structure to model the conditional $\rho$th quantile by means of a link. Parameter estimation in the proposed model is performed using partial maximum likelihood, for which we provide closed formulas for the score vector and partial information matrix. We also discuss some inferential tools, such as the construction of confidence intervals, hypotheses testing, model selection, and forecasting. A Monte Carlo simulation study is conducted to assess the finite sample performance of the proposed partial maximum likelihood approach. Finally, we examine the prediction power by contrasting our method with others in the literature using the Manufacturing Capacity Utilization from the US.
翻译:在这项工作中,我们引入了单位-Weibull自动递减平均移动平均模型类别,用于连续随机变量,价值为$(0,1)美元。拟议模型是一个观测驱动模型,为此,以一组共变和过程历史为条件,随机组件假定遵循单位-Weibull分布参数,该参数通过其$rho$th四分位值。系统组件规定了类似于ARMA的结构,以链接的方式模拟条件值$\rho$th四分位值。拟议模型中的参数估算使用部分最大可能性进行,为此我们为分数矢量和部分信息矩阵提供了封闭公式。我们还讨论了一些推断工具,例如构建信任间隔、假体测试、模型选择和预测。一个蒙特卡洛模拟研究是为了评估拟议部分可能性方法的有限样本性表现。最后,我们通过将我们使用美国制造能力利用文献中的方法与其它方法进行比较,对预测力进行了研究。