Standard causal inference characterizes treatment effect through averages, but the counterfactual distributions could be different in not only the central tendency but also spread and shape. To provide a comprehensive evaluation of treatment effects, we focus on estimating quantile treatment effects (QTEs). Existing methods that invert a nonsmooth estimator of the cumulative distribution functions forbid inference on probability density functions (PDFs), but PDFs can reveal more nuanced characteristics of the counterfactual distributions. We adopt a semiparametric conditional distribution regression model that allows inference on any functionals of counterfactual distributions, including PDFs and multiple QTEs. To account for the observational nature of the data and ensure an efficient model, we adjust for a double balancing score that augments the propensity score with individual covariates. We provide a Bayesian estimation framework that appropriately propagates modeling uncertainty. We show via simulations that the use of double balancing score for confounding adjustment improves performance over adjusting for any single score alone, and the proposed semiparametric model estimates QTEs more accurately than other semiparametric methods. We apply the proposed method to the North Carolina birth weight dataset to analyze the effect of maternal smoking on infant's birth weight.
翻译:标准因果推论通过平均值表示治疗效果,但反事实分布在中央趋势以及扩散和形状方面可能有所不同。为了对治疗效果进行全面评估,我们侧重于估算四分位处理效果(QTEs)。现有方法可以对累积分布功能的非光线估计器进行反射,无法对概率密度函数(PDFs)进行推断,但PDFs可以揭示反事实分布的较细微特征。我们采用了半参数条件分布回归模型,可以推断反事实分布的任何功能,包括PDFs和多个QTEs。为了说明数据的观察性质并确保有效的模型,我们调整了双重平衡的分数,以增大单个共变数的偏差值。我们提供了一个贝氏估计框架,适当地宣传了不确定性的模型。我们通过模拟表明,在确定调整时使用双平衡分,可以提高任何单分数调整的性能,以及拟议的半参数模型估计出生体重,以比其他半偏重法更精确地分析北卡罗纳斯州的婴儿体重方法。我们用拟议的卡罗萨罗那州测方法比其他半焦重方法更精确地分析。