This paper proposes a new approach to achieve direct visual servoing (DVS) based on discrete orthogonal moments (DOM). DVS is conducted whereby the extraction of geometric primitives, matching and tracking steps in the conventional feature-based visual servoing pipeline can be bypassed. Although DVS enables highly precise positioning, and suffers from a small convergence domain and poor robustness, due to the high non-linearity of the cost function to be minimized and the presence of redundant data between visual features. To tackle these issues, we propose a generic and augmented framework to take DOM as visual features into consideration. Through taking Tchebichef, Krawtchouk and Hahn moments as examples, we not only present the strategies for adaptive adjusting the parameters and orders of the visual features, but also exhibit the analytical formulation of the associated interaction matrix. Simulations demonstrate the robustness and accuracy of our method, as well as the advantages over the state of the art. The real experiments have also been performed to validate the effectiveness of our approach.


翻译:本文提出了一种基于离散正交矩(DOM)实现直接视觉伺服(DVS)的新方法。与传统基于特征的视觉伺服流程中的几何原语提取,匹配和跟踪步骤相比,可以省略。虽然DVS可以实现高精度定位,但由于成本函数高度非线性,且在视觉特征之间存在冗余数据,因此其收敛范围较小且鲁棒性较差。为解决这些问题,我们提出了一种通用的增强框架,将DOM视为视觉特征。通过以Tchebichef、Krawtchouk和Hahn矩为例,我们不仅呈现了自适应调整视觉特征的参数和顺序的策略,而且展示了相关的交互矩阵的分析公式。仿真实验表明了我们方法的鲁棒性和准确性,以及相比现有技术的优势。进行了实际实验,以验证我们方法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
【泡泡一分钟】用于深度双目的非监督适应方法(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月14日
Arxiv
0+阅读 · 2023年6月12日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
17+阅读 · 2021年3月29日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员