We propose new methods to obtain simultaneous false discovery proportion bounds for knockoff-based approaches. We first investigate an approach based on Janson and Su's $k$-familywise error rate control method and interpolation. We then generalize it by considering a collection of $k$ values, and show that the bound of Katsevich and Ramdas is a special case of this method and can be uniformly improved. Next, we further generalize the method by using closed testing with a multi-weighted-sum local test statistic. This allows us to obtain a further uniform improvement and other generalizations over previous methods. We also develop an efficient shortcut for its implementation. We compare the performance of our proposed methods in simulations and apply them to a data set from the UK Biobank.
翻译:我们提出新的方法,以同时获得假发现比例比例限制,用于淘汰方法。我们首先调查以Janson和Su的美元家庭错误率控制方法和内插法为基础的方法。然后我们通过考虑一个美元价值的集合来推广这种方法,并表明Katsevich和Ramdas的结合是这种方法的一个特例,可以统一改进。接下来,我们进一步推广这种方法,采用多种加权和当地测试统计的闭门测试方法。这使我们能够获得与以往方法相比的进一步统一改进和其他概括性。我们还为其实施开发了一个高效的捷径。我们比较了我们提出的模拟方法的绩效,并将其应用到英国生物库的数据集中。