We propose a novel method for testing serial independence of object-valued time series in metric spaces, which is more general than Euclidean or Hilbert spaces. The proposed method is fully nonparametric, free of tuning parameters, and can capture all nonlinear pairwise dependence. The key concept used in this paper is the distance covariance in metric spaces, which is extended to auto distance covariance for object-valued time series. Furthermore, we propose a generalized spectral density function to account for pairwise dependence at all lags and construct a Cram\'er-von Mises type test statistic. New theoretical arguments are developed to establish the asymptotic behavior of the test statistic. A wild bootstrap is also introduced to obtain the critical values of the non-pivotal limiting null distribution. Extensive numerical simulations and three real data applications are conducted to illustrate the effectiveness and versatility of our proposed method.
翻译:我们建议一种新颖的方法,用于测试公用空间中天标值时间序列的序列独立性,该方法比欧克利底或希尔伯特空间更为笼统。 提议的方法完全非参数,不使用调制参数,可以捕捉所有非线性对称依赖性。 本文使用的关键概念是公用空间的距离共变法, 扩展至天标值时间序列的自动距离共变法。 此外, 我们提议了一个通用的光谱密度功能, 以计算所有滞后点的双向依赖性, 并构建一个 Cram\'er- von Mises 类型测试统计。 开发了新的理论论据, 以建立测试统计的无光度行为。 还引入了野靴陷阱, 以获取非线性限制空分布的关键值。 进行了广泛的数字模拟和三个真实数据应用, 以说明我们拟议方法的有效性和多功能。</s>