Broadcast and consensus are most fundamental tasks in distributed computing. These tasks are particularly challenging in dynamic networks where communication across the network links may be unreliable, e.g., due to mobility or failures. Indeed, over the last years, researchers have derived several impossibility results and high time complexity lower bounds (i.e., linear in the number of nodes $n$) for these tasks, even for oblivious message adversaries where communication networks are rooted trees. However, such deterministic adversarial models may be overly conservative, as many processes in real-world settings are stochastic in nature rather than worst case. This paper initiates the study of broadcast and consensus on stochastic dynamic networks, introducing a randomized oblivious message adversary. Our model is reminiscent of the SI model in epidemics, however, revolving around trees (which renders the analysis harder due to the apparent lack of independence). In particular, we show that if information dissemination occurs along random rooted trees, broadcast and consensus complete fast with high probability, namely in logarithmic time. Our analysis proves the independence of a key variable, which enables a formal understanding of the dissemination process. More formally, for a network with $n$ nodes, we first consider the completely random case where in each round the communication network is chosen uniformly at random among rooted trees. We then introduce the notion of randomized oblivious message adversary, where in each round, an adversary can choose $k$ edges to appear in the communication network, and then a rooted tree is chosen uniformly at random among the set of all rooted trees that include these edges. We show that broadcast completes in $O(k+\log n)$ rounds, and that this it is also the case for consensus as long as $k \le 0.1n$.


翻译:广播和共识是分布式计算中最基本的任务。 这些任务在动态网络中特别具有挑战性, 因为网络联系的随机性可能是不可靠的, 例如由于流动性或失败。 事实上, 过去几年里, 研究人员为这些任务得出了数种不可能的结果和高时间复杂性的下限( 即节点数的线性), 甚至对于那些通信网络根植于树的模糊信息对手来说也是如此。 然而, 这种确定性的对立模式可能过于保守, 因为现实世界环境中的许多进程在性质上是随机的,而不是最坏的。 本文启动了对随机性动态网络的广播和共识的研究, 引入了一个随机的模糊信息。 然而, 我们的模式在流行病中, 也让人想起了SI 模式的循环性循环( 也就是由于明显缺乏独立性, 使得分析更加困难 ) 。 具体地说, 如果信息传播与随机性的树一起进行, 广播和共识的完整且具有很高的概率, 也就是在对数时间上。 我们的分析证明了一个关键变量的独立性, 使得正式理解传播网络的正确性 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
11+阅读 · 2020年12月2日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员