The presented methodology for testing the goodness-of-fit of an Autoregressive Hilbertian model (ARH(1) model) provides an infinite-dimensional formulation of the approach proposed in Koul and Stute (1999), based on empirical process marked by residuals. Applying a central and functional central limit result for Hilbert-valued martingale difference sequences, the asymptotic behavior of the formulated H-valued empirical process, also indexed by H, is obtained under the null hypothesis. The limiting process is H-valued generalized (i.e., indexed by H) Wiener process, leading to an asymptotically distribution free test. Consistency is also analyzed. The case of misspecified autocorrelation operator of the ARH(1) process is addressed as well. Beyond the Euclidean setting, this approach allows to implement goodness of fit testing in the context of manifold and spherical functional autoregressive processes.
翻译:对Hilbert自回归模型的拟合优度检验
Translated abstract:
本文提出的方法用于测试自回归Hilbertian模型(ARH(1)模型)的拟合优度,提供了基于标记残差的经验过程的无限维度表述,这一方法在Koul和Stute(1999)中提出。应用Hilbert值鞅差分序列的中央和函数中心极限结果,得到了公式化的H-值经验过程在零假设下的渐近行为。极限过程是H-值广义(即由H索引)维纳过程,导致了一个渐近分布自由的检验。同时还分析了一致性。本文还解决了对ARH(1)过程的自相关算子进行误对比的情况。在欧几里得空间之外,该方法还允许在流形和球形函数自回归过程的背景下实现拟合优度检验。