Physics-informed neural networks (PINNs) provide a means of obtaining approximate solutions of partial differential equations and systems through the minimisation of an objective function which includes the evaluation of a residual function at a set of collocation points within the domain. The quality of a PINNs solution depends upon numerous parameters, including the number and distribution of these collocation points. In this paper we consider a number of strategies for selecting these points and investigate their impact on the overall accuracy of the method. In particular, we suggest that no single approach is likely to be ``optimal'' but we show how a number of important metrics can have an impact in improving the quality of the results obtained when using a fixed number of residual evaluations. We illustrate these approaches through the use of two benchmark test problems: Burgers' equation and the Allen-Cahn equation.
翻译:暂无翻译