This paper addresses the problem of multi-robot navigation where robots maneuver on a desired \(m\)-dimensional (i.e., \(m\)-D) manifold in the $n$-dimensional Euclidean space, and maintain a {\it flexible spatial ordering}. We consider $ m\geq 2$, and the multi-robot coordination is achieved via non-Euclidean metrics. However, since the $m$-D manifold can be characterized by the zero-level sets of $n$ implicit functions, the last $m$ entries of the GVF propagation term become {\it strongly coupled} with the partial derivatives of these functions if the auxiliary vectors are not appropriately chosen. These couplings not only influence the on-manifold maneuvering of robots, but also pose significant challenges to the further design of the ordering-flexible coordination via non-Euclidean metrics. To tackle this issue, we first identify a feasible solution of auxiliary vectors such that the last $m$ entries of the propagation term are effectively decoupled to be the same constant. Then, we redesign the coordinated GVF (CGVF) algorithm to {\it boost} the advantages of singularities elimination and global convergence by treating $m$ manifold parameters as additional $m$ virtual coordinates. Furthermore, we enable the on-manifold ordering-flexible motion coordination by allowing each robot to share $m$ virtual coordinates with its time-varying neighbors and a virtual target robot, which {\it circumvents} the possible complex calculation if Euclidean metrics were used instead. Finally, we showcase the proposed algorithm's flexibility, adaptability, and robustness through extensive simulations with different initial positions, higher-dimensional manifolds, and robot breakdown, respectively.
翻译:暂无翻译