Agile maneuvers such as sprinting and high-speed turning in the wild are challenging for legged robots. We present an end-to-end learned controller that achieves record agility for the MIT Mini Cheetah, sustaining speeds up to 3.9 m/s. This system runs and turns fast on natural terrains like grass, ice, and gravel and responds robustly to disturbances. Our controller is a neural network trained in simulation via reinforcement learning and transferred to the real world. The two key components are (i) an adaptive curriculum on velocity commands and (ii) an online system identification strategy for sim-to-real transfer leveraged from prior work. Videos of the robot's behaviors are available at: https://agility.csail.mit.edu/
翻译:短跑和野外高速转动等小动作对脚步机器人具有挑战性。 我们展示了一个端到端的学习控制器,它能为麻省理工学院小型Cheetah实现创纪录的敏捷性,将速度维持在3.9米/秒。 这个系统在草、冰和砾石等自然地形上运行和快速旋转,并对扰动作出有力反应。 我们的控制器是一个神经网络,通过强化学习进行模拟培训,并转移到现实世界。 两个关键组成部分是:(一) 速度指令的适应性课程和(二) 利用以前的工作进行模拟到现实转移的在线系统识别战略。 机器人行为的视频可在以下网址查阅: https://agiltity.csail.mit.edu/。