In this paper, we explore how to use a small amount of new data to update a task-oriented semantic parsing model when the desired output for some examples has changed. When making updates in this way, one potential problem that arises is the presence of conflicting data, or out-of-date labels in the original training set. To evaluate the impact of this understudied problem, we propose an experimental setup for simulating changes to a neural semantic parser. We show that the presence of conflicting data greatly hinders learning of an update, then explore several methods to mitigate its effect. Our multi-task and data selection methods lead to large improvements in model accuracy compared to a naive data-mixing strategy, and our best method closes 86% of the accuracy gap between this baseline and an oracle upper bound.


翻译:在本文中, 我们探索如何使用少量新数据来更新任务导向的语义解析模型, 当某些示例的预期输出发生变化时, 如何更新任务导向的语义解析模型 。 这样进行更新时, 可能出现的一个潜在问题就是存在相互矛盾的数据, 或者在原始培训集中出现过时的标签 。 为了评估这个研究不足的问题的影响, 我们建议建立一个实验性设置, 模拟神经语义解析器的变化 。 我们发现, 存在相互矛盾的数据会极大地阻碍对更新的学习, 然后探索几种方法来减轻更新的效果 。 我们的多任务和数据选择方法导致模型准确性与天真的数据混合战略相比大有改进, 我们的最佳方法可以缩小这个基准和一个天真的顶端之间的精确差距的86% 。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【实用书】流数据处理,Streaming Data,219页pdf
专知会员服务
76+阅读 · 2020年4月24日
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
3+阅读 · 2018年3月2日
Arxiv
7+阅读 · 2018年1月30日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员