In NMT, words are sometimes dropped from the source or generated repeatedly in the translation. We explore novel strategies to address the coverage problem that change only the attention transformation. Our approach allocates fertilities to source words, used to bound the attention each word can receive. We experiment with various sparse and constrained attention transformations and propose a new one, constrained sparsemax, shown to be differentiable and sparse. Empirical evaluation is provided in three languages pairs.
翻译:在NMT中,语言有时会从源头中被删除,或者在翻译中反复生成。我们探索新的策略来解决只改变注意力转变的覆盖问题。我们的方法是将能量分配到源词,用来约束每个字能得到的注意。我们尝试各种稀疏和受限制的注意力转变,并提出一种新的,限制的稀释,被证明是不同和稀释的。经验评估用三种语言提供。