Software defined networking (SDN) represents a transformative shift in network architecture by decoupling the control plane from the data plane, enabling centralized and flexible management of network resources. However, this architectural shift introduces significant security challenges, as SDN's centralized control becomes an attractive target for various types of attacks. While current research has yielded valuable insights into attack detection in SDN, critical gaps remain. Addressing challenges in feature selection, broadening the scope beyond DDoS attacks, strengthening attack decisions based on multi flow analysis, and building models capable of detecting unseen attacks that they have not been explicitly trained on are essential steps toward advancing security in SDN. In this paper, we introduce a novel approach that leverages Natural Language Processing (NLP) and the pre trained BERT base model to enhance attack detection in SDN. Our approach transforms network flow data into a format interpretable by language models, allowing BERT to capture intricate patterns and relationships within network traffic. By using Random Forest for feature selection, we optimize model performance and reduce computational overhead, ensuring accurate detection. Attack decisions are made based on several flows, providing stronger and more reliable detection of malicious traffic. Furthermore, our approach is specifically designed to detect previously unseen attacks, offering a solution for identifying threats that the model was not explicitly trained on. To rigorously evaluate our approach, we conducted experiments in two scenarios: one focused on detecting known attacks, achieving 99.96% accuracy, and another on detecting unseen attacks, where our model achieved 99.96% accuracy, demonstrating the robustness of our approach in detecting evolving threats to improve the security of SDN networks.
翻译:暂无翻译