Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.


翻译:图表结构数据深层神经网络最近的进展导致在建议系统基准上取得最先进的性能。然而,使这些方法切实可行,并且可以推广到带有数十亿项目和数亿用户的网络规模建议任务,这仍然是一个挑战。这里我们描述了我们在Pinters开发并部署的大规模深层建议引擎。我们开发了一个数据效率高的图表革命网络算法 PinSage(GCN) 算法 PinSage),该算法将高效随机行走和图形演动结合起来,以产生包含图表结构和节点特征信息的节点(即项目)嵌入。与以前的GCN方法相比,我们开发了一种基于高效随机随机行去构建图层结构的新方法,并设计了一种新的培训战略,依靠更难和更难的培训范例来提高模型的稳健和趋和趋同性。我们还开发了一个高效的地图推算模型,用一种经过培训的模型来生成嵌入。我们在深度图表结构图结构中部署了PinS,用75亿个图案实例,用一个有30亿个日期的图级的图版图式图式图版图,用来制作模型和18个模型的模型和18个图式图版图版图版图版图版图式的模型,用来制作和图式图式的模型和图式图式的模型和图式图式图式图式图式图式的模型和图式图式图式的模型和图式的模型,用来制作和18版图式的模型和18版图式的模型。

14
下载
关闭预览

相关内容

【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关VIP内容
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Top
微信扫码咨询专知VIP会员