Object classification using LiDAR 3D point cloud data is critical for modern applications such as autonomous driving. However, labeling point cloud data is labor-intensive as it requires human annotators to visualize and inspect the 3D data from different perspectives. In this paper, we propose a semi-supervised cross-domain learning approach that does not rely on manual annotations of point clouds and performs similar to fully-supervised approaches. We utilize available 3D object models to train classifiers that can generalize to real-world point clouds. We simulate the acquisition of point clouds by sampling 3D object models from multiple viewpoints and with arbitrary partial occlusions. We then augment the resulting set of point clouds through random rotations and adding Gaussian noise to better emulate the real-world scenarios. We then train point cloud encoding models, e.g., DGCNN, PointNet++, on the synthesized and augmented datasets and evaluate their cross-domain classification performance on corresponding real-world datasets. We also introduce Point-Syn2Real, a new benchmark dataset for cross-domain learning on point clouds. The results of our extensive experiments with this dataset demonstrate that the proposed cross-domain learning approach for point clouds outperforms the related baseline and state-of-the-art approaches in both indoor and outdoor settings in terms of cross-domain generalizability. The code and data will be available upon publishing.
翻译:使用 LiDAR 3D 点云数据对自动驱动等现代应用至关重要 。 但是, 点云数据标签是劳动密集型的, 因为它需要人工批注者从不同角度对三维数据进行视觉化和检查。 在本文中, 我们建议采用半监督的跨场学习方法, 不依赖点云的手动说明, 并且执行与完全监督的方法相似的操作。 我们利用现有的 3D 对象模型来培训可概括到真实世界点云的分类器。 我们通过从多个角度和任意部分隔离对三维对象模型进行取样来模拟点云的获取。 我们随后通过随机旋转来增加由此产生的一组点云, 并添加高斯尼的噪音以更好地模仿现实世界情景。 我们然后在综合和增强的数据集上, 并评估其在相应的真实世界点云的跨场分类性表现。 我们还从多个角度来模拟点- Syn2Real, 新的基准数据集用于跨多端云层的交叉学习。 我们的大规模实验结果将显示我们所拟的跨境的云层和直径的模型。 将显示我们所拟数据在普通 和室中进行的数据格式 。