We present a new method which provides object location priors for previously unseen object 6D pose estimation. Existing approaches build upon a template matching strategy and convolve a set of reference images with the query. Unfortunately, their performance is affected by the object scale mismatches between the references and the query. To address this issue, we present a finer-grained correlation estimation module, which handles the object scale mismatches by computing correlations with adjustable receptive fields. We also propose to decouple the correlations into scale-robust and scale-aware representations to estimate the object location and size, respectively. Our method achieves state-of-the-art unseen object localization and 6D pose estimation results on LINEMOD and GenMOP. We further construct a challenging synthetic dataset, where the results highlight the better robustness of our method to varying backgrounds, illuminations, and object sizes, as well as to the reference-query domain gap.
翻译:我们提出了一个新的方法,为先前看不见的天体 6D 构成估计提供对象位置前置方法。 现有方法基于一个匹配战略模板,并与查询混合一套参考图像。 不幸的是,它们的性能受到对象规模在引用和查询之间不匹配的影响。 为解决这一问题,我们提出了一个细微的关联估计模块,通过计算与可调整的可接受字段的对应关系来处理天体规模不匹配问题。我们还提议将相关关系分别与比例- 紫外线和比例- 认知表达法脱钩,以估计天体位置和大小。 我们的方法实现了最先进的不可见对象本地化, 并在 LINEMOD 和 GENMOP 上提出了6D 估算结果。 我们进一步构建了一个具有挑战性的合成数据集, 其结果凸显了我们方法对不同背景、 亮度、 对象大小的更稳健性, 以及参考- 调查域差距。