Optical flow estimation has been a long-lasting and fundamental problem in the computer vision community. However, despite the advances of optical flow estimation in perspective videos, the 360$^\circ$ videos counterpart remains in its infancy, primarily due to the shortage of benchmark datasets and the failure to accommodate the omnidirectional nature of 360$^\circ$ videos. We propose the first perceptually realistic 360$^\circ$ filed-of-view video benchmark dataset, namely FLOW360, with 40 different videos and 4,000 video frames. We then conduct comprehensive characteristic analysis and extensive comparisons with existing datasets, manifesting FLOW360's perceptual realism, uniqueness, and diversity. Moreover, we present a novel Siamese representation Learning framework for Omnidirectional Flow (SLOF) estimation, which is trained in a contrastive manner via a hybrid loss that combines siamese contrastive and optical flow losses. By training the model on random rotations of the input omnidirectional frames, our proposed contrastive scheme accommodates the omnidirectional nature of optical flow estimation in 360$^\circ$ videos, resulting in significantly reduced prediction errors. The learning scheme is further proven to be efficient by expanding our siamese learning scheme and omnidirectional optical flow estimation to the egocentric activity recognition task, where the classification accuracy is boosted up to $\sim$26%. To summarize, we study the optical flow estimation in 360$^\circ$ videos problem from perspectives of the benchmark dataset, learning model, and also practical application. The FLOW360 dataset and code are available at https://siamlof.github.io.


翻译:360美元的光学流估计数是计算机视觉界的一个长期和根本性问题。然而,尽管在视觉视频中光学流估计数的进步,360美元的circ$视频对应方仍然处于初创阶段,主要原因是基准数据集短缺,以及无法容纳360美元的全向性视频。我们建议第一个概念上现实的360 ⁇ circ$的存档视频基准数据集,即FLOW360,有40种不同的视频和4 000个视频框架。我们随后进行全面的特征分析和与现有数据集的广泛比较,显示FLOW360的直观真实性、独特性和多样性。此外,我们展示了一个全新的Siams代表全方向流动(SLOF)的学习框架,通过混合损失,将现有的Siamuservy 对比性和光学流损失结合起来,通过培训输入全方向框架的随机旋转模型,我们提议的对比性方案适应了离子值的直流值,显示FLOxL360的直流、独特性和多样性。我们不断扩展的光学模型的模型,通过不断扩展的光学计划,通过不断扩展的光学的光学计划,通过不断演化的校测测测算的模型, 将光学运动的模型和不断的模型的模型,将数据转换成为不断的模型。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2020年12月24日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员