Online reconstructing and rendering of large-scale indoor scenes is a long-standing challenge. SLAM-based methods can reconstruct 3D scene geometry progressively in real time but can not render photorealistic results. While NeRF-based methods produce promising novel view synthesis results, their long offline optimization time and lack of geometric constraints pose challenges to efficiently handling online input. Inspired by the complementary advantages of classical 3D reconstruction and NeRF, we thus investigate marrying explicit geometric representation with NeRF rendering to achieve efficient online reconstruction and high-quality rendering. We introduce SurfelNeRF, a variant of neural radiance field which employs a flexible and scalable neural surfel representation to store geometric attributes and extracted appearance features from input images. We further extend the conventional surfel-based fusion scheme to progressively integrate incoming input frames into the reconstructed global neural scene representation. In addition, we propose a highly-efficient differentiable rasterization scheme for rendering neural surfel radiance fields, which helps SurfelNeRF achieve $10\times$ speedups in training and inference time, respectively. Experimental results show that our method achieves the state-of-the-art 23.82 PSNR and 29.58 PSNR on ScanNet in feedforward inference and per-scene optimization settings, respectively.
翻译:在线重建和渲染大规模室内场景是长期以来的挑战。基于SLAM的方法可以在实时中逐渐重建3D场景几何,但无法呈现逼真的结果。而NeRF-based方法产生了有前途的新视角综合成果,但它们长时间离线优化和缺乏几何约束的缺点会对高效处理在线输入造成挑战。受传统3D重建和NeRF的互补优势启发,我们因此探讨了明确的几何表示与NeRF渲染相结合,以实现高效在线重建和高质量的渲染。我们引入SurfelNeRF,这是一种神经辐射场的变体,它采用灵活可扩展的神经Surfel表示来存储几何属性和从输入图像提取的外观特征。我们进一步扩展了传统的Surfel融合方案,以逐步将传入的输入帧集成到重建的全局神经场表示中。此外,我们提出了一种高效的可微栅格化方案,用于渲染神经Surfel辐射场,这有助于SurfelNeRF在训练和推理时实现10倍的加速。实验证明,我们的方法在Scannet中的前向推理和每个场景的优化设置中均实现了23.82 PSNR和29.58 PSNR的最新成果。