Spatio-temporal models are widely used in many research areas from ecology to epidemiology. However, most covariance functions describe spatial relationships based on Euclidean distance only. In this paper, we introduce the R package SSNbayes for fitting Bayesian spatio-temporal models and making predictions on branching stream networks. SSNbayes provides a linear regression framework with multiple options for incorporating spatial and temporal autocorrelation. Spatial dependence is captured using stream distance and flow connectivity while temporal autocorrelation is modelled using vector autoregression approaches. SSNbayes provides the functionality to make predictions across the whole network, compute exceedance probabilities and other probabilistic estimates such as the proportion of suitable habitat. We illustrate the functionality of the package using a stream temperature dataset collected in Idaho, USA.
翻译:从生态到流行病学,许多研究领域广泛使用时空模型,但是,大多数共变功能都只描述以欧几里德距离为基础的空间关系。在本文中,我们引入了R包 SSNBayes,用于安装贝叶西亚时空模型,并对分流流网络作出预测。SSNBayes提供了一个线性回归框架,其中含有纳入空间和时间自动关系的各种选项。空间依赖性通过流距离和流连性捕捉,而时间自动反向关系则使用矢量自动反射方法进行模拟。SSNBayes提供了在整个网络中作出预测的功能,计算超常概率和其他概率估计,如适当生境的比例。我们用在美国伊达霍收集的流温数据集来说明该包的功能。