Deep Operator Network (DeepONet) is a neural network framework for learning nonlinear operators such as those from ordinary differential equations (ODEs) describing complex systems. Multiple-input deep neural operators (MIONet) extended DeepONet to allow multiple input functions in different Banach spaces. MIONet offers flexibility in training dataset grid spacing, without constraints on output location. However, it requires offline inputs and cannot handle varying sequence lengths in testing datasets, limiting its real-time application in dynamic complex systems. This work redesigns MIONet, integrating Long Short Term Memory (LSTM) to learn neural operators from time-dependent data. This approach overcomes data discretization constraints and harnesses LSTM's capability with variable-length, real-time data. Factors affecting learning performance, like algorithm extrapolation ability are presented. The framework is enhanced with uncertainty quantification through a novel Bayesian method, sampling from MIONet parameter distributions. Consequently, we develop the B-LSTM-MIONet, incorporating LSTM's temporal strengths with Bayesian robustness, resulting in a more precise and reliable model for noisy datasets.
翻译:暂无翻译