Image super-resolution (SR) is a technique to recover lost high-frequency information in low-resolution (LR) images. Spatial-domain information has been widely exploited to implement image SR, so a new trend is to involve frequency-domain information in SR tasks. Besides, image SR is typically application-oriented and various computer vision tasks call for image arbitrary magnification. Therefore, in this paper, we study image features in the frequency domain to design a novel scale-arbitrary image SR network. First, we statistically analyze LR-HR image pairs of several datasets under different scale factors and find that the high-frequency spectra of different images under different scale factors suffer from different degrees of degradation, but the valid low-frequency spectra tend to be retained within a certain distribution range. Then, based on this finding, we devise an adaptive scale-aware feature division mechanism using deep reinforcement learning, which can accurately and adaptively divide the frequency spectrum into the low-frequency part to be retained and the high-frequency one to be recovered. Finally, we design a scale-aware feature recovery module to capture and fuse multi-level features for reconstructing the high-frequency spectrum at arbitrary scale factors. Extensive experiments on public datasets show the superiority of our method compared with state-of-the-art methods.
翻译:图像超分辨率(SR) 是一种在低分辨率(LR) 图像中恢复丢失的高频信息的技术。 空间- 域信息已被广泛用于执行图像- SR, 因此一个新的趋势是将频率- 域信息包含在SR任务中。 此外, 图像- SR 通常以应用为导向, 各种计算机视觉任务要求图像任意放大。 因此, 在本文中, 我们研究频率域中的图像特征, 设计一个新型的大规模任意图像- SR 网络。 首先, 我们统计分析不同规模因素下若干数据集的LR- HR 图像配对, 发现不同规模因素下不同图像的高频光谱存在不同程度的退化, 但有效的低频光谱往往保留在一定的分布范围内。 然后, 我们根据这一发现, 设计一个适应性比例- 特征分化机制, 利用深度强化学习, 准确和适应性地将频谱分解成低频段部分, 和高频段 将恢复。 最后, 我们设计一个规模- 有觉觉的功能恢复模块模块模块模块模块, 采集并结合高频谱的多级公共数据。