This article describes a custom VHDL firmware implementation of a two-dimensional cluster-finder architecture for reconstructing hit positions in the new vertex pixel detector (VELO) that is part of the LHCb Upgrade. This firmware has been deployed to the existing FPGA cards that perform the readout of the VELO, as a further enhancement of the DAQ system, and will run in real time during physics data taking, reconstructing VELO hits coordinates on-the-fly at the LHC collision rate. This pre-processing allows the first level of the software trigger to accept a 11% higher rate of events, as the ready-made hits coordinates accelerate the track reconstruction and consumes significantly less electrical power. It additionally allows the raw pixel data to be dropped at the readout level, thus saving approximately 14% of the DAQ bandwidth. Detailed simulation studies have shown that the use of this real-time cluster finding does not introduce any appreciable degradation in the tracking performance in comparison to a full-fledged software implementation. This work is part of a wider effort aimed at boosting the real-time processing capability of HEP experiments by delegating intensive tasks to dedicated computing accelerators deployed at the earliest stages of the data acquisition chain.


翻译:本文描述一个自定义的 VHDL 硬盘安装系统, 用于重建新顶点像素探测器( VELO) 中撞击位置的二维聚点显示器, 这是 LHCb 升级的一部分 。 该硬盘已安装到现有的可读出 VELO 的 FPGA卡上, 以进一步增强 DAQ 系统, 并将在物理数据采集过程中实时运行, 重建 LHC 碰撞率的 VELO 飞行点击坐标 。 此预处理使第一级软件触发器能够接受11%以上的事件速率, 因为即时点击坐标加快了轨迹重建, 耗用的电量要少得多 。 此外, 它还允许原始像素数据在读出水平上被丢弃, 从而节省了 DAQ 带宽的大约14% 。 详细模拟研究表明, 使用这一实时集群发现不会给跟踪性效果带来任何明显的退化, 与完全的软件实施相比。 这项工作是更广泛的努力的一部分, 目的是通过密集任务提高HEPEP 部署的早期数据实验的实时处理能力, 。

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关VIP内容
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员