Advanced recommender systems usually involve multiple domains (such as scenarios or categories) for various marketing strategies, and users interact with them to satisfy diverse demands. The goal of multi-domain recommendation (MDR) is to improve the recommendation performance of all domains simultaneously. Conventional graph neural network based methods usually deal with each domain separately, or train a shared model to serve all domains. The former fails to leverage users' cross-domain behaviors, making the behavior sparseness issue a great obstacle. The latter learns shared user representation with respect to all domains, which neglects users' domain-specific preferences. In this paper we propose $\mathsf{H^3Trans}$, a hierarchical hypergraph network based correlative preference transfer framework for MDR, which represents multi-domain user-item interactions into a unified graph to help preference transfer. $\mathsf{H^3Trans}$ incorporates two hyperedge-based modules, namely dynamic item transfer (Hyper-I) and adaptive user aggregation (Hyper-U). Hyper-I extracts correlative information from multi-domain user-item feedbacks for eliminating domain discrepancy of item representations. Hyper-U aggregates users' scattered preferences in multiple domains and further exploits the high-order (not only pair-wise) connections to improve user representations. Experiments on both public and production datasets verify the superiority of $\mathsf{H^3Trans}$ for MDR.


翻译:高级推荐人系统通常涉及多种营销战略的多个领域(例如情景或类别),用户与这些系统互动以满足不同的需求。多域建议的目标是同时改善所有域的建议性性能。基于常规图形神经网络的方法通常分别处理每个域,或训练一个共同的模式为所有域服务。前者未能利用用户的跨域行为,使行为分散问题成为一个巨大的障碍。后者学习了所有域的共享用户代表性,忽视了用户的域性偏好。在本文件中,我们提议为MDR建立一个基于相关偏好的等级高频网络框架。MDR代表多域用户-项目互动,形成一个统一的图表,帮助所有域的转移。$\mathf{H3Transer} 包含两个基于高端的模块,即动态项目转移(Hyper-I)和适应性用户汇总(Hyper-U),超I从多域用户-项目的反馈中提取了相关信息,用于消除高域域端用户-高端数据级数据库的升级。 高端用户-透明级数据库只改进了多域域域域的系统(AS-RO-RO-RO-RO-RO-RO-RO-RO-I)的升级用户对数据库的演示。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
15+阅读 · 2021年6月27日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员