We present a model reduction approach that extends the original empirical interpolation method to enable accurate and efficient reduced basis approximation of parametrized nonlinear partial differential equations (PDEs). In the presence of nonlinearity, the Galerkin reduced basis approximation remains computationally expensive due to the high complexity of evaluating the nonlinear terms, which depends on the dimension of the truth approximation. The empirical interpolation method (EIM) was proposed as a nonlinear model reduction technique to render the complexity of evaluating the nonlinear terms independent of the dimension of the truth approximation. The main idea is to replace any nonlinear term with a reduced basis expansion expressed as a linear combination of pre-computed basis functions and parameter-dependent coefficients. The coefficients are determined efficiently by an inexpensive and stable interpolation procedure. In order to improve the approximation accuracy, we propose a first-order empirical interpolation method (FOEIM) that employs both the nonlinear function and its partial derivatives at selected parameter points to construct the reduced basis expansion of the nonlinear term. Our approach is applied to nonlinear elliptic PDEs and compared to the Galerkin reduced basis approximation and the EIM. Numerical results are presented to demonstrate the performance of the three reduced basis approaches.


翻译:我们提出了一种模型简化方法,将经验插值方法扩展到参数化非线性偏微分方程(PDE)的准确和高效的降阶逼近。在非线性存在的情况下,Galerkin简化基础逼近由于评估非线性项的高复杂度而仍然计算昂贵,这取决于真实逼近的维度。经验插值方法(EIM)被提出作为一种非线性模型简化技术,使得评估非线性项的复杂度与真实逼近的维数无关。其主要思想是将任何非线性项替换为通过预先计算的基函数和参数相关系数的线性组合表示的简化基础展开。系数通过一种廉价而稳定的插值过程有效确定。为了提高逼近精度,我们提出了一种一阶经验插值方法(FOEIM),它使用所选参数点处的非线性函数及其偏导数来构造非线性项的简化基础展开。我们的方法应用于非线性椭圆PDE,并与Galerkin简化基础逼近和EIM进行了比较。数值结果表明了三种基础简化方法的性能。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
19+阅读 · 2021年9月12日
专知会员服务
50+阅读 · 2020年12月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
用 LDA 和 LSA 两种方法来降维和做 Topic 建模
AI研习社
13+阅读 · 2018年8月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月13日
Arxiv
0+阅读 · 2023年6月13日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
19+阅读 · 2021年9月12日
专知会员服务
50+阅读 · 2020年12月14日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
用 LDA 和 LSA 两种方法来降维和做 Topic 建模
AI研习社
13+阅读 · 2018年8月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员