We present a new technique for visualizing high-dimensional data called cluster MDS (cl-MDS), which addresses a common difficulty of dimensionality reduction methods: preserving both local and global structures of the original sample in a single 2-dimensional visualization. Its algorithm combines the well-known multidimensional scaling (MDS) tool with the $k$-medoids data clustering technique, and enables hierarchical embedding, sparsification and estimation of 2-dimensional coordinates for additional points. While cl-MDS is a generally applicable tool, we also include specific recipes for atomic structure applications. We apply this method to non-linear data of increasing complexity where different layers of locality are relevant, showing a clear improvement in their retrieval and visualization quality.
翻译:我们提出了一种叫MDS(CL-MDS)的高维数据可视化的新技术,该技术解决了维度减少方法的一个常见难题:将原始样本的本地和全球结构保留在一个单一的二维可视化中。它的算法将众所周知的多维缩放工具(MDS)与$k$-mods的数据组合技术结合起来,并允许对额外点进行等级嵌入、封闭和估计二维坐标。虽然CL-MDS是一个普遍适用的工具,但我们也包括了原子结构应用的具体食谱。我们将这种方法应用于不同地点的相关非线性数据,显示其检索和可视化质量的明显改进。