During the last decade, hyperspectral images have attracted increasing interest from researchers worldwide. They provide more detailed information about an observed area and allow an accurate target detection and precise discrimination of objects compared to classical RGB and multispectral images. Despite the great potentialities of hyperspectral technology, the analysis and exploitation of the large volume data remain a challenging task. The existence of irrelevant redundant and noisy images decreases the classification accuracy. As a result, dimensionality reduction is a mandatory step in order to select a minimal and effective images subset. In this paper, a new filter approach normalized mutual synergy (NMS) is proposed in order to detect relevant bands that are complementary in the class prediction better than the original hyperspectral cube data. The algorithm consists of two steps: images selection through normalized synergy information and pixel classification. The proposed approach measures the discriminative power of the selected bands based on a combination of their maximal normalized synergic information, minimum redundancy and maximal mutual information with the ground truth. A comparative study using the support vector machine (SVM) and k-nearest neighbor (KNN) classifiers is conducted to evaluate the proposed approach compared to the state of art band selection methods. Experimental results on three benchmark hyperspectral images proposed by the NASA "Aviris Indiana Pine", "Salinas" and "Pavia University" demonstrated the robustness, effectiveness and the discriminative power of the proposed approach over the literature approaches. Keywords: Hyperspectral images; target detection; pixel classification; dimensionality reduction; band selection; information theory; mutual information; normalized synergy


翻译:在过去十年中,超光谱图像吸引了全世界研究人员越来越多的兴趣,它们提供了有关观察到的区域的更详细信息,并允许准确的目标探测和精确区分与古典RGB和多光谱图像相比的物体。尽管超光谱技术潜力巨大,但分析和利用大容量数据仍然是一项艰巨的任务。不相关的冗余和噪音图像的存在降低了分类的准确性。因此,减少维度是选择一个最低和有效图像子集的一个必要步骤。本文建议采用新的过滤法,使相互协作正常化(NMS),以发现与原始的超光谱图像立方数据相比,在类预测中具有更好互补性的频谱。算法包括两个步骤:通过正常的协同信息和像素分类进行图像选择。拟议方法衡量选定频段的歧视性力量,其结合了最高级的共振素信息、最低限度的冗余和与地面真相的相互信息。在使用支持矢量机(SVM)和KNNN(K)分类方法进行了比较研究,以评价拟议中的超高频谱级图像预测方式,并评估“Slimia Bribalal Seral Serveal ” 和“Pervial Excial Exervial 校测测测算” 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月8日
Arxiv
0+阅读 · 2022年12月7日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员