Dimensionality reduction techniques aim at representing high-dimensional data in low-dimensional spaces to extract hidden and useful information or facilitate visual understanding and interpretation of the data. However, few of them take into consideration the potential cluster information contained implicitly in the high-dimensional data. In this paper, we propose LaptSNE, a new graph-layout nonlinear dimensionality reduction method based on t-SNE, one of the best techniques for visualizing high-dimensional data as 2D scatter plots. Specifically, LaptSNE leverages the eigenvalue information of the graph Laplacian to shrink the potential clusters in the low-dimensional embedding when learning to preserve the local and global structure from high-dimensional space to low-dimensional space. It is nontrivial to solve the proposed model because the eigenvalues of normalized symmetric Laplacian are functions of the decision variable. We provide a majorization-minimization algorithm with convergence guarantee to solve the optimization problem of LaptSNE and show how to calculate the gradient analytically, which may be of broad interest when considering optimization with Laplacian-composited objective. We evaluate our method by a formal comparison with state-of-the-art methods on seven benchmark datasets, both visually and via established quantitative measurements. The results demonstrate the superiority of our method over baselines such as t-SNE and UMAP. We also provide out-of-sample extension, large-scale extension and mini-batch extension for our LaptSNE to facilitate dimensionality reduction in various scenarios.


翻译:降低尺寸技术的目的是在低维空间代表高维数据,以提取隐藏和有用的信息,或便利对数据进行视觉理解和解释;然而,其中很少有人考虑到高维数据中隐含的潜在群集信息;在本文件中,我们提议采用基于t-SNE的新的图形外延非线性减少方法LaptSNE,这是将高维数据作为2D散射图进行视觉化的最佳方法之一。具体地说,LaptSNE利用Laplacian图的扩展值信息,在学习将当地和全球结构从高维空间保护到低维空间时,缩小低维层嵌入中的潜在群集。我们建议采用新的图形外延非线性非线性减少方法,这是基于t-SNE(t-S)决定变量的功能之一。我们提供了主要-最小化算法,保证解决LaptSNE的优化问题,并展示如何计算梯度分析,在考虑用Lacal-S(S)的大规模比值测量方法对Lab-S(S)进行正式的比标标的比标,同时提供我们标准化的定量数据。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月9日
Arxiv
0+阅读 · 2022年12月7日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员