The cubic regularization method (CR) is a popular algorithm for unconstrained non-convex optimization. At each iteration, CR solves a cubically regularized quadratic problem, called the cubic regularization subproblem (CRS). One way to solve the CRS relies on solving the secular equation, whose computational bottleneck lies in the computation of all eigenvalues of the Hessian matrix. In this paper, we propose and analyze a novel CRS solver based on an approximate secular equation, which requires only some of the Hessian eigenvalues and is therefore much more efficient. Two approximate secular equations (ASEs) are developed. For both ASEs, we first study the existence and uniqueness of their roots and then establish an upper bound on the gap between the root and that of the standard secular equation. Such an upper bound can in turn be used to bound the distance from the approximate CRS solution based ASEs to the true CRS solution, thus offering a theoretical guarantee for our CRS solver. A desirable feature of our CRS solver is that it requires only matrix-vector multiplication but not matrix inversion, which makes it particularly suitable for high-dimensional applications of unconstrained non-convex optimization, such as low-rank recovery and deep learning. Numerical experiments with synthetic and real data-sets are conducted to investigate the practical performance of the proposed CRS solver. Experimental results show that the proposed solver outperforms two state-of-the-art methods.
翻译:三次校正法( CR) 是不受限制的非convex优化的流行算法 。 在每次迭代中, CR 解决一个分立的常规二次方程式问题, 叫做 三次校正子问题 。 解决 CRS 的方法之一是解决世俗方程式问题, 其计算瓶颈在于计算赫森矩阵的所有元素值。 在本文中, 我们提议和分析一个基于近似非世俗方程式的新型 CRS 解算器, 这只需要部分赫森电子值, 因而效率更高。 两种近似非常规的二次方程式( ASE) 得到了开发。 对于 ASE 来说, 我们首先研究其根部的存在和独特性, 然后在标准世俗方程式根和根之间的间隔阂上设定一个上限。 这种上限可以反过来用来将基于 Assian AS 的近似 CRS 解决方案与真正的 CRS 解析方程式解决方案的距离, 从而为我们的 CRS 解析方程式提供了理论保证。 我们的 CRS 求解方程式的最好特征是两个近似的世俗方程式等式方方方方方方方方程式, 我们的CS 的CS 的解解法要求只要求只进行高基级的深度的高级的反演化、 的反演化、 级的反演化后演化的反演化后演算法,, 的反演化的反演化后演化的低方程式,, 的解式的反演化式的反演算法是, 的反演算法, 。