Deep learning methods have achieved great success in solving partial differential equations (PDEs), where the loss is often defined as an integral. The accuracy and efficiency of these algorithms depend greatly on the quadrature method. We propose to apply quasi-Monte Carlo (QMC) methods to the Deep Ritz Method (DRM) for solving the Neumann problems for the Poisson equation and the static Schr\"{o}dinger equation. For error estimation, we decompose the error of using the deep learning algorithm to solve PDEs into the generalization error, the approximation error and the training error. We establish the upper bounds and prove that QMC-based DRM achieves an asymptotically smaller error bound than DRM. Numerical experiments show that the proposed method converges faster in all cases and the variances of the gradient estimators of randomized QMC-based DRM are much smaller than those of DRM, which illustrates the superiority of QMC in deep learning over MC.
翻译:深层学习方法在解决部分差异方程式(PDEs)方面取得了巨大成功,损失通常被界定为一个整体。这些算法的准确性和效率在很大程度上取决于二次曲线法。我们提议对深海里兹法(DRM)采用准蒙卡洛(QMC)方法来解决Poisson方程式和静态 Schr\"{o}dinger方程式的内科曼问题。关于错误估计,我们分解了使用深层学习算法解决PDEs在概括错误、近似错误和培训错误中的错误。我们确定了以QMC为基础的DRM的上限,并证明基于QMC的DRM的误差比DRM小得多。数字实验表明,拟议的方法在所有案例中都比较快,随机QMC的DRM的梯度估计器差异小得多,这表明QMC的深层次学习优于MC。