Recently, few-shot object detection~(FSOD) has received much attention from the community, and many methods are proposed to address this problem from a knowledge transfer perspective. Though promising results have been achieved, these methods fail to achieve shot-stable:~methods that excel in low-shot regimes are likely to struggle in high-shot regimes, and vice versa. We believe this is because the primary challenge of FSOD changes when the number of shots varies. In the low-shot regime, the primary challenge is the lack of inner-class variation. In the high-shot regime, as the variance approaches the real one, the main hindrance to the performance comes from misalignment between learned and true distributions. However, these two distinct issues remain unsolved in most existing FSOD methods. In this paper, we propose to overcome these challenges by exploiting rich knowledge the model has learned and effectively transferring them to the novel classes. For the low-shot regime, we propose a distribution calibration method to deal with the lack of inner-class variation problem. Meanwhile, a shift compensation method is proposed to compensate for possible distribution shift during fine-tuning. For the high-shot regime, we propose to use the knowledge learned from ImageNet as guidance for the feature learning in the fine-tuning stage, which will implicitly align the distributions of the novel classes. Although targeted toward different regimes, these two strategies can work together to further improve the FSOD performance. Experiments on both the VOC and COCO benchmarks show that our proposed method can significantly outperform the baseline method and produce competitive results in both low-shot settings (shot<5) and high-shot settings (shot>=5). Code is available at https://github.com/JulioZhao97/EffTrans_Fsdet.git.


翻译:最近,微小目标探测~(FSOD)受到社区的极大关注,从知识转让的角度提出了解决这一问题的许多方法。虽然取得了令人乐观的成果,但这些方法未能实现镜头稳定:在低发制度中优于低发制度的方法很可能在高发制度下挣扎,反之亦然。我们认为,这是因为当射击次数不同时,FSOD的主要挑战就在于变化。在低发制度中,主要挑战在于缺乏内级差异。在高发制度中,随着差异接近真实的,业绩的主要障碍来自所学和真实分布之间的不匹配。虽然这些方法没有实现,但这些方法没有实现镜头稳定:在大多数现有的FSOD方法中,这两个突出的问题可能无法解决。在本文件中,我们提议通过利用该模型所学的丰富知识,有效地将其转移到新的等级。关于低发制度,我们建议一种分配校正方法,以解决内部级别差异变化问题。同时,我们提议一种补偿方法,以弥补在微调的E-ODOD/O系统期间可能发生的分配变化。在高发期间,在高清晰的版本分配中,将采用高清晰的版本方法。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Arxiv
21+阅读 · 2020年10月11日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员