A treedepth decomposition of an undirected graph $G$ is a rooted forest $F$ on the vertex set of $G$ such that every edge $uv\in E(G)$ is in ancestor-descendant relationship in $F$. Given a weight function $w\colon V(G)\rightarrow \mathbb{N}$, the weighted depth of a treedepth decomposition is the maximum weight of any path from the root to a leaf, where the weight of a path is the sum of the weights of its vertices. It is known that deciding weighted treedepth is NP-complete even on trees. We prove that weighted treedepth is also NP-complete on bounded degree graphs. On the positive side, we prove that the problem is efficiently solvable on paths and on 1-subdivided stars.
翻译:暂无翻译