Knowledge Graph (KG) and attention mechanism have been demonstrated effective in introducing and selecting useful information for weakly supervised methods. However, only qualitative analysis and ablation study are provided as evidence. In this paper, we contribute a dataset and propose a paradigm to quantitatively evaluate the effect of attention and KG on bag-level relation extraction (RE). We find that (1) higher attention accuracy may lead to worse performance as it may harm the model's ability to extract entity mention features; (2) the performance of attention is largely influenced by various noise distribution patterns, which is closely related to real-world datasets; (3) KG-enhanced attention indeed improves RE performance, while not through enhanced attention but by incorporating entity prior; and (4) attention mechanism may exacerbate the issue of insufficient training data. Based on these findings, we show that a straightforward variant of RE model can achieve significant improvements (6% AUC on average) on two real-world datasets as compared with three state-of-the-art baselines. Our codes and datasets are available at https://github.com/zig-kwin-hu/how-KG-ATT-help.


翻译:知识图(KG)和关注机制在引进和选择有用信息以用于监管不力的方法方面证明是有效的,然而,只提供定性分析和模拟研究作为证据,在本文件中,我们提供数据集并提出模式,对关注和KG对包级关系提取(RE)的影响进行定量评估。我们发现:(1) 更高的关注准确性可能导致业绩恶化,因为这可能损害模型提取实体提及特征的能力;(2) 关注的表现在很大程度上受到各种噪音分布模式的影响,这种模式与真实世界数据集密切相关;(3) KG-enhanced 关注确实改善了RE的绩效,但不是通过加强关注,而是通过纳入实体;(4) 关注机制可能会加剧培训数据不足的问题。根据这些调查结果,我们表明,与三个最先进的基线相比,一个直接的RE模型模型模式可以在两个真实世界数据集上实现显著改进(平均6% AUC)。我们的代码和数据集可在https://github.com/zig-kwin-hu/how-KATT-chel)。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
【AAAI2021】 层次图胶囊网络
专知会员服务
83+阅读 · 2020年12月18日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
CSKG: The CommonSense Knowledge Graph
Arxiv
18+阅读 · 2020年12月21日
Type-augmented Relation Prediction in Knowledge Graphs
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员