Spectral graph convolutional neural networks (GCNNs) have been producing encouraging results in graph classification tasks. However, most spectral GCNNs utilize fixed graphs when aggregating node features, while omitting edge feature learning and failing to get an optimal graph structure. Moreover, many existing graph datasets do not provide initialized edge features, further restraining the ability of learning edge features via spectral GCNNs. In this paper, we try to address this issue by designing an edge feature scheme and an add-on layer between every two stacked graph convolution layers in GCNN. Both are lightweight while effective in filling the gap between edge feature learning and performance enhancement of graph classification. The edge feature scheme makes edge features adapt to node representations at different graph convolution layers. The add-on layers help adjust the edge features to an optimal graph structure. To test the effectiveness of our method, we take Euclidean positions as initial node features and extract graphs with semantic information from point cloud objects. The node features of our extracted graphs are more scalable for edge feature learning than most existing graph datasets (in one-hot encoded label format). Three new graph datasets are constructed based on ModelNet40, ModelNet10 and ShapeNet Part datasets. Experimental results show that our method outperforms state-of-the-art graph classification methods on the new datasets by reaching 96.56% overall accuracy on Graph-ModelNet40, 98.79% on Graph-ModelNet10 and 97.91% on Graph-ShapeNet Part. The constructed graph datasets will be released to the community.


翻译:在图形分类任务中,大多数光谱的光谱图形相光谱神经网络(GCNNNs)一直在生成令人振奋的结果。然而,大多数光谱的GCNNs在汇总节点特性时使用固定的图形,同时略去边缘特征学习,没有获得最佳图形结构。此外,许多现有的图形数据集并不提供初始化边缘特征,进一步限制通过光谱GCNNs学习边缘特征的能力。在本文件中,我们试图通过设计边缘特征方案和在 GANN 中每两个堆叠叠叠的图层之间增加一层来解决这一问题。两者都是轻量的,同时可以有效填补边缘特征学习和图形分类的精度精度精度学习和性能增强之间的空白。 边缘特征使边缘特征适应不同图形相色结构的图形结构。此外, 增加的图形数据集将Euclideidean 位置作为初始节点特征,并用点云点天天体的语层信息提取图表。我们提取的图表的节点特征特征特征比大多数现有的图形群落区域显示的图形区域图解% 部分显示数据格式。

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Graph representation learning for street networks
Arxiv
0+阅读 · 2022年11月9日
Arxiv
0+阅读 · 2022年11月9日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员