In this paper, we propose a novel transmissive reconfigurable intelligent surface (TRIS) transceiver-driven cooperative integrated sensing, computing, and communication (ISCC) network to meet the requirement for a diverse network with low energy consumption. The cooperative base stations (BSs) are equipped with TRIS transceivers to accomplish sensing data acquisition, communication offloading, and computation in a time slot. In order to obtain higher cooperation gain, we utilize a signal-level spatial registration algorithm, which is realized by adjusting the beamwidth. Meanwhile, for more efficient offloading of the computational task, multistream communication is considered, and rank-$N$ constraints are introduced, which are handled using an iterative rank minimization (IRM) scheme. We construct an optimization problem with the objective function of minimizing the total energy consumption of the network to jointly optimize the beamforming matrix, time slot allocation, sensing data allocation and sensing beam scheduling variables. Due to the coupling of the variables, the proposed problem is a non-convex optimization problem, which we decouple and solve using a block coordinate descent (BCD) scheme. Finally, numerical simulation results confirm the superiority of the proposed scheme in improving the overall network performance and reducing the total energy consumption of the network.
翻译:暂无翻译