Unsupervised real world super resolution (USR) aims at restoring high-resolution (HR) images given low-resolution (LR) inputs when paired data is unavailable. One of the most common approaches is synthesizing noisy LR images using GANs and utilizing a synthetic dataset to train the model in a supervised manner. The goal of modeling the degradation generator is to approximate the distribution of LR images given a HR image. Previous works simply assumed the conditional distribution as a delta function and learned the deterministic mapping from HR image to a LR image. Instead, we propose the probabilistic degradation generator. Our degradation generator is a deep hierarchical latent variable model and more suitable for modeling the complex distribution. Furthermore, we train multiple degradation generators to enhance the mode coverage and apply the novel collaborative learning. We outperform several baselines on benchmark datasets in terms of PSNR and SSIM and demonstrate the robustness of our method on unseen data distribution.
翻译:未经监督的真实世界超级分辨率 (USR) 旨在恢复高分辨率图像(HR), 给低分辨率(LR) 输入数据。 最常见的方法之一是使用 GAN 合成噪音LR 图像, 并使用合成数据集来以监督方式训练模型。 模拟降解生成器的目的是近似以HR 图像为基准的分布。 先前的工程只是将条件性分布假设为三角形函数, 并学习了从 HR 图像到 LR 图像的确定性映射。 相反, 我们提议了概率降解生成器。 我们的降解生成器是一个深层次潜伏变量模型, 更适合模拟复杂分布。 此外, 我们培训多个降解生成器, 以强化模式覆盖, 并应用新型协作学习 。 我们超越了 PSNR 和 SSIM 基准数据集上的若干基准基线, 并展示了我们方法在未知数据分布上的稳健性 。