We introduce an approach for solving PDEs over manifolds using physics informed neural networks whose architecture aligns with spectral methods. The networks are trained to take in as input samples of an initial condition, a time stamp and point(s) on the manifold and then output the solution's value at the given time and point(s). We provide proofs of our method for the heat equation on the interval and examples of unique network architectures that are adapted to nonlinear equations on the sphere and the torus. We also show that our spectral-inspired neural network architectures outperform the standard physics informed architectures. Our extensive experimental results include generalization studies where the testing dataset of initial conditions is randomly sampled from a significantly larger space than the training set.
翻译:暂无翻译