Topic segmentation is critical for obtaining structured long documents and improving downstream tasks like information retrieval. Due to its ability of automatically exploring clues of topic shift from a large amount of labeled data, recent supervised neural models have greatly promoted the development of long document topic segmentation, but leaving the deeper relationship of semantic coherence and topic segmentation underexplored. Therefore, this paper enhances the supervised model's ability to capture coherence from both structure and similarity perspectives to further improve the topic segmentation performance, including the Topic-aware Sentence Structure Prediction (TSSP) and Contrastive Semantic Similarity Learning (CSSL). Specifically, the TSSP task is proposed to force the model to comprehend structural information by learning the original relations of adjacent sentences in a disarrayed document, which is constructed by jointly disrupting the original document at the topic and sentence levels. In addition, we utilize inter- and intra-topic information to construct contrastive samples and design the CSSL objective to ensure that the sentences representations in the same topic have higher semantic similarity, while those in different topics are less similar. Extensive experiments show that the Longformer with our approach significantly outperforms old state-of-the-art (SOTA) methods. Our approach improves $F_{1}$ of old SOTA by 3.42 (73.74 -> 77.16) and reduces $P_{k}$ by 1.11 points (15.0 -> 13.89) on WIKI-727K and achieves an average reduction of 0.83 points on $P_{k}$ on WikiSection. The average $P_{k}$ drop of 2.82 points on the two out-of-domain datasets also illustrates the robustness of our approach
翻译:暂无翻译