This paper studies matching markets in the presence of middlemen. In our framework, a buyer-seller pair may either trade directly or use the services of a middleman; and a middleman may serve multiple buyer-seller pairs. Direct trade between a buyer and a seller is costlier than a trade mediated by a middleman. For each such market, we examine an associated cooperative game with transferable utility. First, we show that an optimal matching for a matching market with middlemen can be obtained by considering the two-sided assignment market where each buyer-seller pair is allowed to use the mediation service of the middlemen free of charge and attain the maximum surplus. Second, we prove that the core of a matching market with middlemen is always non-empty. Third, we show the existence of a buyer-optimal core allocation and a seller-optimal core allocation. In general, the core does not exhibit a middleman-optimal matching. Finally, we establish the coincidence between the core and the set of competitive equilibrium payoff vectors.


翻译:在我们的框架中,买卖双方可以直接交易或使用中间人的服务;中间人也可以为多个买卖双方服务。买卖双方的直接贸易成本比中间人调解的贸易成本要高。对于每一个这样的市场,我们检查一个具有可转让效用的关联合作游戏。首先,我们通过考虑允许每对买卖双方免费使用中间人的调解服务并获得最大盈余的双向分配市场,可以取得与中间人匹配市场的最佳匹配。第二,我们证明与中间人匹配市场的核心始终不是空的。第三,我们显示了买方-最佳核心分配和卖方-最佳核心分配的存在。一般而言,核心并不显示中间-最佳匹配。最后,我们确定了核心与竞争平衡支付矢量之间的巧合。

0
下载
关闭预览

相关内容

两人亲密社交应用,官网: trypair.com/
专知会员服务
39+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年8月22日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月31日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年8月22日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员