In the literature on simultaneous non-cooperative games, it is well-known that a positive affine (linear) transformation (PAT) of the utility payoffs do not change the best response sets and the Nash equilibrium set. PATs have been successfully used to expand the classes of 2-player games for which we can compute a Nash equilibrium in polynomial time. We investigate which game transformations other than PATs also possess one of the following properties: (i) The game transformation shall not change the Nash equilibrium set when being applied on an arbitrary game. (ii) The game transformation shall not change the best response sets when being applied on an arbitrary game. First, we prove that property (i) implies property (ii). Over a series of further results, we derive that game transformations with property (ii) must be positive affine. Therefore, we obtained two new and equivalent characterisations with game theoretic meaning for what it means to be a positive affine transformation. All our results in particular hold for the 2-player case of bimatrix games.


翻译:在同时不合作游戏的文献中,众所周知,公用费的正面折线(线性)转换(PAT)不会改变最佳响应组合和纳什均衡组合。 PAT已经成功地用于扩大二人游戏的类别,我们可以在多元时间计算纳什平衡。我们调查了除PAT以外的哪些游戏变换也具有下列特性之一:(一) 在任意游戏中应用游戏时,游戏变换不应改变纳什平衡设定。 (二) 在任意游戏中应用时,游戏变换不应改变最佳响应组合。首先,我们证明,属性(一)意味着属性(二)意味着属性(二)。在一系列进一步的结果中,我们得出,带有属性(二)的游戏变换必须具有正等效。因此,我们获得了两个具有游戏理论意义的新和等式化特征,对它意味着积极的折线性变。我们所有的结果都特别适用于二人游戏的双曲游戏。

0
下载
关闭预览

相关内容

【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
149+阅读 · 2021年5月9日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月31日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
8+阅读 · 2019年2月15日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员