We revisit the notion of root polynomials, thoroughly studied in [F. Dopico and V. Noferini, Root polynomials and their role in the theory of matrix polynomials, Linear Algebra Appl. 584:37--78, 2020] for general polynomial matrices, and show how they can efficiently be computed in the case of matrix pencils. The staircase algorithm implicitly computes so-called zero directions, as defined in [P. Van Dooren, Computation of zero directions of transfer functions, Proceedings IEEE 32nd CDC, 3132--3137, 1993]. However, zero directions generally do not provide the correct information on partial multiplicities and minimal indices. These indices are instead provided by two special cases of zero directions, namely, root polynomials and vectors of a minimal basis of the pencil. We show how to extract, starting from the block triangular pencil that the staircase algorithm computes, both a minimal basis and a maximal set of root polynomials in an efficient manner. Moreover, we argue that the accuracy of the computation of the root polynomials can be improved by making use of iterative refinement.


翻译:我们重新审视了普通多元基质的根多面体概念,在[F. Dopico和V. Noferini, 根多面体及其在矩阵多面体理论中的作用,Linear Algebra Appl. 584:37-78, 2020] 中对普通多元基质的根多面体概念进行了透彻研究,并展示了如何在矩阵铅笔的情况下有效计算。楼梯算法暗含地计算了所谓的零方向,正如[P. Van Dooren, 计算转移函数零方向,Concess IEEEE 32nd CDC, 3132-3137, 1993] 所定义的。然而,一般而言,零方向并不提供部分多面和最低指数的正确信息。这些指数是由两个零方向的特殊例子提供的,即根多面体和铅笔最小基的矢量。我们展示了如何从块三角铅笔中提取出一个最小的基础和顶面的顶面多面值算法,既可以以有效的方式计算,也可以用一个顶点的顶部多面多面体精度模型进行精确的精确的计算。此外,我们论证是用多层的精度计算。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年12月31日
Arxiv
9+阅读 · 2021年6月21日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员