Siamese tracking has achieved groundbreaking performance in recent years, where the essence is the efficient matching operator cross-correlation and its variants. Besides the remarkable success, it is important to note that the heuristic matching network design relies heavily on expert experience. Moreover, we experimentally find that one sole matching operator is difficult to guarantee stable tracking in all challenging environments. Thus, in this work, we introduce six novel matching operators from the perspective of feature fusion instead of explicit similarity learning, namely Concatenation, Pointwise-Addition, Pairwise-Relation, FiLM, Simple-Transformer and Transductive-Guidance, to explore more feasibility on matching operator selection. The analyses reveal these operators' selective adaptability on different environment degradation types, which inspires us to combine them to explore complementary features. To this end, we propose binary channel manipulation (BCM) to search for the optimal combination of these operators. BCM determines to retrain or discard one operator by learning its contribution to other tracking steps. By inserting the learned matching networks to a strong baseline tracker Ocean, our model achieves favorable gains by $67.2 \rightarrow 71.4$, $52.6 \rightarrow 58.3$, $70.3 \rightarrow 76.0$ success on OTB100, LaSOT, and TrackingNet, respectively. Notably, Our tracker, dubbed AutoMatch, uses less than half of training data/time than the baseline tracker, and runs at 50 FPS using PyTorch. Code and model will be released at https://github.com/JudasDie/SOTS.


翻译:最近几年,暹粒追踪取得了突破性的业绩,其精髓是高效匹配操作者交叉关系及其变异。除了显著的成功之外,重要的是要注意到超光速匹配网络的设计在很大程度上依赖专家经验。此外,我们实验发现,单对齐操作者难以保证在所有具有挑战性的环境中进行稳定的跟踪。因此,我们从特征融合的角度而不是明显的相似性学习的角度引入了6个新型匹配操作者,即Conatenation、PointWis-adtion、PairWise-Relation、FILM、简单转换和传输指南,以探索匹配操作者选择的更多可行性。分析显示这些操作者在不同环境降解类型上有选择的适应性,这激励我们将其结合到探索互补特性。为此,我们提议双轨操纵(BCM)来寻找这些操作者的最佳组合。 LaCM决定通过学习其对其它跟踪步骤的贡献来重新配置或抛弃一个操作者。通过将学习的匹配网络插入强大的基线J-Transferent-Trading-Trading-Trading-Trading-Trading-Trading-Guidal-Guide-Guide-guide-Guide-Guide-Guide-Guide-Guide-Guide-Guide-Guid-Guide-Ge,我们模型在50美元轨道轨道中,我们模型中可以实现50美元轨道/轨道/轨道上,OLOral_轨道/轨道/轨道上,OTULOTOTW/轨道。

8
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
116+阅读 · 2019年12月24日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
9+阅读 · 2018年3月10日
Arxiv
6+阅读 · 2018年2月8日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
116+阅读 · 2019年12月24日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员