Matrix completion refers to completing a low-rank matrix from a few observed elements of its entries and has been known as one of the significant and widely-used problems in recent years. The required number of observations for exact completion is directly proportional to rank and the coherency parameter of the matrix. In many applications, there might exist additional information about the low-rank matrix of interest. For example, in collaborative filtering, Netflix and dynamic channel estimation in communications, extra subspace information is available. More precisely in these applications, there are prior subspaces forming multiple angles with the ground-truth subspaces. In this paper, we propose a novel strategy to incorporate this information into the completion task. To this end, we designed a multi-weight nuclear norm minimization where the weights are such chosen to penalize each angle within the matrix subspace independently. We propose a new scheme for optimally choosing the weights. Specifically, we first calculate an upper-bound expression describing the coherency of the interested matrix. Then, we obtain the optimal weights by minimizing this expression. Simulation results certify the advantages of allowing multiple weights in the completion procedure. Explicitly, they indicate that our proposed multi-weight problem needs fewer observations compared to state-of-the-art methods.


翻译:矩阵的完成是指从几个观测到的条目中完成一个低位矩阵,这是近年来大量广泛使用的问题之一。精确完成所需的观测数量与矩阵的级别和一致性参数直接成比例。在许多应用中,可能存在关于低位利益矩阵的额外信息。例如,在合作过滤、Netflix和通信中的动态信道估计方面,可以获取额外的子空间信息。在这些应用中,更准确地说,有先前的子空间组成了多个角度,与地面真相子空间相连接。在本文件中,我们提出了将这一信息纳入完成任务的新战略。为此,我们设计了一个多重核规范最小化,选择这些重量来单独惩罚矩阵子空间的每个角度。我们提出了最佳选择权重的新办法。具体地说,我们首先计算一个上限表达方式,说明感兴趣的矩阵的共性。然后,我们通过将这一表达方式最小化获得最佳的权重。模拟结果证明在完成程序中允许多重权重的优势。为此,我们设计了一个多重的核规范,从而可以独立地惩罚矩阵子空间中的每个角度。我们提议的方法表明我们所提出的比重较少。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
9+阅读 · 2021年6月21日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员