Digital advertising is a critical part of many e-commerce platforms such as Taobao and Amazon. While in recent years a lot of attention has been drawn to the consumer side including canonical problems like ctr/cvr prediction, the advertiser side, which directly serves advertisers by providing them with marketing tools, is now playing a more and more important role. When speaking of sponsored search, bid keyword recommendation is the fundamental service. This paper addresses the problem of keyword matching, the primary step of keyword recommendation. Existing methods for keyword matching merely consider modeling relevance based on a single type of relation among ads and keywords, such as query clicks or text similarity, which neglects rich heterogeneous interactions hidden behind them. To fill this gap, the keyword matching problem faces several challenges including: 1) how to learn enriched and robust embeddings from complex interactions among various types of objects; 2) how to conduct high-quality matching for new ads that usually lack sufficient data. To address these challenges, we develop a heterogeneous-graph-neural-network-based model for keyword matching named HetMatch, which has been deployed both online and offline at the core sponsored search platform of Alibaba Group. To extract enriched and robust embeddings among rich relations, we design a hierarchical structure to fuse and enhance the relevant neighborhood patterns both on the micro and the macro level. Moreover, by proposing a multi-view framework, the model is able to involve more positive samples for cold-start ads. Experimental results on a large-scale industrial dataset as well as online AB tests exhibit the effectiveness of HetMatch.


翻译:数字广告是许多电子商务平台(如道保和亚马逊)的关键部分。 虽然近年来消费者方面受到了很多关注,包括Ctr/cvr预测等卡通性问题,但广告商方面(通过向广告商提供营销工具,直接为广告商服务)正在发挥越来越重要的作用。当谈到赞助搜索时,标语关键词建议是一项基本服务。本文件处理关键词匹配问题,这是关键词建议的主要步骤。现有的关键词匹配方法仅考虑基于广告和关键词之间单一类型关系的建模相关性,例如查询点击或文本相似性,忽略了它们背后隐藏的丰富的异质互动。为填补这一差距,关键词匹配问题面临若干挑战,包括:(1) 如何从各种对象之间的复杂互动中学习丰富和有力的嵌入;(2) 如何为通常缺乏足够数据的新广告进行高质量的匹配。 为了应对这些挑战,我们开发了一个以网格为基础的关键词匹配模式模型,即HetMatch, 已经将在线和离线的查询点击点击或文本相似性,忽略了它们背后隐藏的丰富的异性互动。为了填补这一差距,关键关键关键词匹配,关键词匹配,关键词匹配的匹配问题匹配问题对应的链接匹配,关键词的匹配问题对应搭配对链接匹配问题, 将是一个高级B的深度的模型的模型的模型的模型的模型, 升级的模型,我们在深度和离线上一个在线和离线上, 升级的深度的深度的深度的深度的深度的模型的深度的模型, 升级的深度的模型, 升级的深度的模型, 升级的模型将提升的模型, 升级的深度的模型, 升级的深度的模型, 升级的模型, 升级的深度的深度的模型将使得的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的深度的

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
4+阅读 · 2021年5月10日
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
Top
微信扫码咨询专知VIP会员